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Abstract

Vibration acceleration levels on large space platforms exceed the requirements of many
space experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is
being built by the NASA Marshall Space Flight Center to attenuate these disturbances to
acceptable levels. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to levitate and isolate
payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration,
relative position, and relative orientation measurements are fed to a state-space controller. The
controller, in turn, determines the actuator currents needed for effective experiment isolation.
This paper presents the development of an algebraic, state-space model of g-LIMIT, in a form
suitable for optimal controller design. The equations are first derived using Newton’s Second

Law directly, then simplified to a linear form for the purpose of controller design.
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Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station
have shown that on-orbit acceleration environments are noisier than once expected [1]. The
acceleration environment on the International Space Station (ISS) likewise is not as clean as
originally anticipated; the ISS will not meet its microgravity requirements without the use of
isolation systems [1], [2]. While the quasi-static acceleration levels due to such factors as
atmospheric drag, gravity gradient, and spacecraft rotations are on the order of several micro-g,
the vibration levels above 0.01 Hz exceed 300 micro-g rms, with peaks typically reaching milli-g
levels [3]. These acceleration levels are sufficient to cause significant disturbances to many
experiments that have fluid or vapor phases, including a large class of materials science
experiments {4].

The Glovebox Integrated Microgravity Isolation Technology (¢-LIMIT) is designed to
isolate experiments from the high frequency (>0.01 Hz) vibrations on the Space Shuttle and the
ISS, while passing the quasi-static (<0.01 Hz) accelerations to the experiment [5]. The
acceleration-attenuation capability of g-LIMIT is limited primarily by two factors: (1) the
character of the umbilical required between the g-LIMIT base (stator) and the g-LIMIT
experiment platform (flotor), and (2) the allowed stator-to-flotor rattlespace. A primary goal in g-
LIMIT design was to isolate at the individual experiment, rather than entire rack, level; ideally g-
LIMIT isolates only the sensitive elements of an experiment. This typically results in a stator-to-
flotor umbilical that can be greatly reduced in size and in the services it must provide. In the
current design, g-LIMIT employs three umbilicals to provide experiments with power, and with

data-acquisition and control services [6].



In order to design controllers for g-LIMIT it was necessary to develop an appropriate
dynamic model of the system. The present paper presents an algebraic, state-space model of g-

LIMIT, in a form appropriate for optimal controller design.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional
experiment platform has been studied extensively by Hampton, et al. [5, 7, 8]. Tt has been found
that optimal control techniques can be effectively employed using a state-space system model,
with relative-position, relative-velocity, and acceleration states. In these studies the experiment
platform was assumed to be subject to Lorentz (voice-coil) electromagnetic actuation, and to
indirect (umbilical-induced) and direct translational disturbances.

The task of the research presented below was to develop a corresponding state-space
model for g-LIMIT. Translational and rotational relative-position and relative-velocity, and
translational acceleration states, were to be included in the system model. The g-LIMIT dynamic

model must incorporate indirect and direct translational and rotational disturbances.

System Model



A schematic of g-LIMIT is depicted in Figure 1. The stator, fixed in reference
frame (5). is rigidly mounted to the ISS. The flotor, frame (9. is magnetically levitated above the

stator by six Lorentz actuators (two shown), each consisting of a flat racetrack-shaped electrical
coil, with an active linear (straight) region positioned between a set of Nd-Fe-Bo supermagnets.
For more information on the basic actuator design see Reference [9]. The coils and the
supermagnets are fixed to the stator and flotor, respectively. Control currents passing through the
coils interact with their respective supermagnet flux fields to produce control forces used for

flotor isolation and disturbance attenuation.

The flotor has mass center F* and a dextral coordinate system with unit vectors [, f
—_l =2

and f1, and origin K. The stator (actually, stator-plus-ISS) has mass center §” and a dextral
coordinate system with unit vectors El, 52, and 3) and origin S,. The inertial reference

frame (W is similarly defined by 7, #,, and #,, and origin N,. The umbilical is attached to the
-_ —r -_—

stator at S, and to the flotor at . When the flotor is centered in its rattlespace (the “home”

u?

position), F~ and F, are located at stator-fixed points F, ,and F,, respectively.
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Figure 1. Schematic of g-LIMIT -

State Equations of Motion
Preliminaries
Let E be some flotor-fixed point of interest for which the acceleration is to be determined.
Nd

If E has inertial position r_, then its inertial velocity and acceleration are r =-—(r ) and
—NoE —NoE dr \=NE

N N
dl °d . e
For= ’ { i (rN F)}, respectively. (The pre-superscript indicates the reference frame assumed
=Ny a —Np&

fixed, for purpose of differentiation. The first and second subscripts indicate the vector origin and

terminus, respectively.) The angular velocity and angular acceleration of the flotor with respect to

S4(y)

the inertial frame are represented by N@F and NgF,respectively, where NgF = ,
ar



Let F be the resultant of all external forces acting on the flotor; _}\/LF/F (or simply M), the
moment resultant of these forces about F*; m, the flotor mass; and lF/F (or i), the central inertia
dyadic of the flotor for ff , f , and f . Then Newton’s Second Law for the flotor can be

= =2 =3

expressed in the following two forms:

F=miy (Eq. 1)

and M=1 5"+ B x(1 ) (Eq. 2)

From Equation (2),

pre—y

F)] . (Eq. 3)

M_—%Fx(

i N
e

NOCF ZL—I .
Equation (1) presents the translational equations of motion for the system (in vector form)
in terms of the acceleration of flotor mass center F~. However, the primary objective of the

control system design is to attenuate the absolute acceleration of point E, not of point F.

Consequently, it will be useful to find an expression for KNO Fointerms of 7y . The three §;
measure numbers of 7 . will be used as states in the state equations ultimately to be used for

controller design.



In addition to the above objective, the controller must prevent the flotor from exceeding
its rattlespace limits, i.e., from bumping into the stator. It is desirable, then, that relative-position
and relative-velocity information (both translational and rotational) also be included in the

equations of motion for controller design. The §, measure numbers of the relative position and

relative velocity for F*, from its home position F, will provide six translational states in the

system state equations. Six corresponding rotational states will be included as well. The
remainder of this paper will be concerned with expressing the system equations of motion

[Equations (1) and (2)] in terms of the selected fifteen states.

Translational Equations of Motion

To develop the translational equations, in terms of the chosen states, begin with the
following: Teirt =Iwe v e ~ Ingsy ~ Lsory - (Eq. 4)
Differentiation of Equation (4) yields

. . N._F . NS
Frppr=Fye T Q@ XIpget — Iy, = @ XEs,F - (Eq. 5)

A second differentiation gives

. N, F NF [ NF . NS
Fprpr =Lyt & Xrpprt @ X( () XKEF*)_KNUSO— A XTIy
NS N .S (Eq. 6)
%S xS xrg ).
Substitution for Yo" from Equation (3) into Equation (6) yields
.. .. -1 N _F N .F NS ) N
Fy rt = Lnge T {L '[M_‘ w X (L w )]} XTI ~Ingsy ™ % XLsyF, (Eq. 7)

NS NS N F Foo .
- w X( (0] X’_sor,{)+ U] X( W XTIgr )

In these equations, from the addition theorem for angular velocities,



Mo' =Y’ + S@F . (Eq. 8)
Under the assumptions that *@* and "a’ are negligibly small and, therefore, that
Fneso = ENgs, (Eq. 9)

Equation (7) reduces to

S W e —ias, +T0" < (0" xrpe).  (Ea10)

. .o — g 8
Y =Inge +{[ ] '[M_ ol X(

h = _—

I~

Linearization about “@" =0 yields the following result:

FiF S EngE +{i_] —M} XTI et = Engs, - (Eq. I1)

—rh
(Note that assuming N@S to be negligible does not imply that reference frames (® and O are

identical; it means rather that @ can be treated as if it is in pure translation relative to ®. for

the frequencies of interest.)

Equation (11) describes 7 g# g in terms of the acceleration of an arbitrary flotor-fixed point E.

For E located at F*, Equation (11) can be used straightforwardly with Equation (1) to yield

. | ..
P =| = s, (Eq. 12)
m v

where the second term on the right-hand-side is the indirect disturbance acceleration. Define now
an (unknown) indirect translational acceleration disturbance input to the flotor, applied at the
stator end of the umbilical:

(Eq. 13)

Ain= I-NOSH .

Substitution from Equation (13) into Equation (12) yields the following:

l
Prpr = ('—)E Q- (Eq. 14)

m



Turn next to 7 . Substituting from Equation (14) into Equation (11), using Equation

(13), and solving for 7 ;.. one obtains the following:

ZNOE:(";)E+£_I M X1 g Eq. 15)

Appropriate expressions for F and M will now be determined in terms of the position and
velocity of the flotor, relative to the stator. These expressions will be substituted into Equations
(14) and (15) to obtain more useful representations of the equations of motion.

The force resultant F is the vector sum of the six actuator (coil) forces Ef, (i=1,..,0), with
resultant F,; of the umbilical force F,, caused by umbilical extensions and rotations from the
umbilical home position; of the (unknown) direct disturbance forces, with resultant Fy; and of the
gravitational force F,. Gravity may be neglected for a space vehicle in free-fall orbit. (Gravity
gradient and fluctuations in the gravitational field are lumped together in F,). The moment
resultant M is the vector sum of the various moments acting on the flotor. These moments are

from four sources: the coil forces, the umbilical forces, the umbilical moment, and the direct
disturbance moment. Let M . represent the moment about F”, due to the respective coil forces
F_, assumed to act at their respective coil centers B;. Represent by M, the moment about F
due to the umbilical force F,. Let M, represent the umbilical-transmitted moment, due (1) to
translations of umbilical attachment point F, from its home position £, (2) to rotations about

F

u>’

of the flotor relative to the stator, from the home orientation, and (3) to umbilical bias
moment in the home position. Finally, let M , represent the (unknown) moment due to the direct-

disturbance forces and moments, with F, assumed to act at F. In equation form,
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E:Et‘ +£u +Ed’ (Eq 16)
6 .
where F.=YF.; (Eq. 17)
=1
and M:M(,+Muf+M”+Md, (Eq. 18)
6 I3
where M. :EKF*B,»XE:-’ (Eq. 19)
i=l
and M., =rps XF,. (Eq. 20)

More explicit expressions for E: and F, will now be developed. If the actuator has coil

current I,z,, length L, and magnetic flux density Bi_B?,, then the associated actuator force

becomes

F

F.=-ILLB,I xB,. (Eq. 21)

i
.

Assume a translational stiffness K/ in the 5 direction for an umbilical elongation in
the §, direction, and a corresponding translational damping C}/. Assume also a translational
stiffness K-/ in the §, direction for a positive umbilical rotation about the §; direction, and a
corresponding translational damping CH/. Let F, represent the umbilical bias force, exerted by

the umbilical on the flotor in the home position. Then the total force of the umbilical on the flotor

becomes

|='“f'1
il
|
M-
-
;:N“
T':_‘
!
X
I
T
e
+
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.Mw
:Q
z
[ — |
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where the vector F/S(_) represents the rotation about F, of the flotor, relative to the stator, from the
home orientation. Equations (17), (21), and (22) now provide expressions for F. and F, that

can be used in Equation (16) for substitution into Equations (14) and (15).

As with Fland F, above, M, can also be expressed in more explicit form, in analogous
fashion. Assume a rotational stiffness K’/ and a rotational damping C!/, about the §; direction,
for umbilical twist about the § direction. Assume also a rotational stiffness K"/ and a rotational

. : ij
damping C

o

about the §,direction, for umbilical extension in the s direction. Let M, represent

the total umbilical bias moment, exerted about F, by the umbilical on the flotor, in the home

position. Then the moment M , can be expressed by the following:

S
e 3

[
I
|
N
N
kol
—
s
:
1=
I'_.ZT‘
+
i N
M-
O

~.
i
T

(Eq. 23)

Substituting Equation (21) into (19), and Equation (22) into (20) produces expressions for M
and M, respectively. These expressions, along with Equations (17), (21), (22), and (23) can be
substituted into Equation (15) to produce a more useful expression for 7y .

In principle, one could select a set of umbilical elongations, elongation rates, rotations, and
rotation rates as the system states. However, since the translational form of Newton’s Second Law

given by Equation (14) employs the acceleration F p+z*, it is more natural to choose states based
on f p*p* rather than r, . . To accomplish this one must substitute appropriately for r,. and

its derivative into Equations (22) and (23). The pertinent relationship is



(Eq. 24)

F. =7 +r +r .
“hafu SRR TERE D TEE,

are constant vectors of equal magnitude and opposite direction in the

Note that » , and r .
whiFh FF,

stator- and flotor-fixed reference frames, respectively; in particular,

. e — * .
LA S| LF'F, il
" * . A = — * . . 25
Yesm 52 YFF, ._fiz (Eq. 25)
« % .9 — . 7
KFthh 53 -’—.F*Fu f_3

expressing the umbilical forces and

It will be shown later that Equations (24) and (25) facilitate

~  FIS
Sis

fer)
’I_.

s

. . . . d
moments in terms of the following twelve scalar quantiies: rg*e* - 8,5 — ({F*F* )
—En =1 dr [

system states, for the state-space

and —
dr

description. It is also desired to include, as auxiliary states, the §,measure numbers of 7 . [see

s
d (F"ga)-gi, These quantities will be chosen as

Eq. (15)], for control purposes. Then Equations (14) and (15) will yield the translational

cquations of motion in state-space form, provided that (as will be shown later) Fpxpe and Fy p

5,2 542

. d d . .
can be expressed in terms of o QF}*F*) and 7—&%5), respectively. To this end, recall that
e ’ dt

* and Ngshave been assumed to be negligible in the frequency range of interest; therefore,

N
w

one has the following:

N
. d
KF/:F* :———(II (L’FITF* ) (Eq 26)
(Eq. 27)

Sd2
and LA (KF,TF*) :
dt
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S42
Similarly, F e =%Q woE ) - (Eq. 28)

Note that although the terms involving N@S and Ngs have been neglected in Equation (27) their

effects in Equation (14) could alternatively be considered as lumped together with 7 ¢ in a;,.

Including these higher-order terms, Equation (13) would be rewritten as follows:

S

-5 : L. N L) NS NS 5
Qi = Lngs, — & XIpgr 20 X—dr (KF,,F )— 0] X( W XIpp ) (Eqg. 29)

Equations (14), (16), (17), (21), (22), (26), and (27) provide the basis for a state-space

form of the translational equations of motion, using as states the §, components of r,.+p~,
1

s
— rF:F*), F/SQ, and S’;(F’SQ). In addition, for control purposes, low-pass-filtered

approximations of 7y » [beginning with Eqgs. (15) and (28)] will be used as auxiliary states. This

development will be presented later [see Equations (65) through (67)].

Rotational Equations of Motion
The rotational equations of motion are given by Equation (2) [or, equivalently, by

Equation (3)], where M is defined by Equations (18), (19), (20), and (23). Consider the left-

F_ 5d* (F/Se

> _), under the assumption that
dr”

hand-side of Equation (3). It will be shown that N_o_(

N N _S .
Nw® and " o are approximately zero.

Differentiating Equation (8), one can express the angular acceleration Ng[:, in terms of



or, expanding, as

14

=— — (Eq. 30
- dt de * — 450
N N
v F_ d{(n s d(s F\, N, S_S F
o =—\L o+ —LTo 4+ 0 X 0. Eq. 31
dr ( - ) dt ( - ) - - (Eq.-31)
Assuming, as before, that NQS =0 and Ngs =0, Equation (31) simplifies to:

v or_d (s F

o ———( ® ) (Eq. 32)

——dt

The rotation vector ©'* 0, defined previously, represents the rotation of the flotor, relative

to the stator, from the home position. (Conceptually, Frs 0 is a free vector ¢ s iy, where

F/Sﬁ(D indicates the positive direction of the rotation axis; and ¢, the rotation angle about that

axis.) The angular velocity vector S(_DF is related to the rotation vector as follows [10]:

S oF = _Si(F/SQ)

w = (Eq. 33)
dt
Substitution from Equation (33) into Equation (32) yields the following:
voF o d (s
dr”
Substitution from Equation (34) into Equation (3) yields:
S;2 i
;’ (F/S_e-)zl—l-[ﬂ _NL—OFX(L'N@F)] ' (Eq. 35)
rh - =
Assuming, as before, that "@° =0, one obtains:
5d? (s -1 5 F s F
R G e T TR (Eq. 36)

dat~
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Linearization of Equation (36) about Sg_)”:Q yields the following form of the rotational

equations of motion:
2
4 (risg)=1 M. (Eq. 37)

Substitution from Equation (18) into Equation (37) yields:

S s
L (Fvg)=r (M, + M, M, M), (Eq. 38)

dr?

6
where (from before) M, = ZKF*B- xF., (Eq. 39)

3 3 3 3 N
- 2 ZK L; kﬁE ZC:{ j(ll; (zf;‘,,p“)'-i,}éj

j=1 =l j=1 =l

(Eq. 40)
303 3003 [Sa ¢,
+> 2K {”ge ﬁfk;‘ + ZCZJ{ Z (NSQ)”—GJ:GJ} M,
j=1 = j=1 =l ¢
and M, =rpe XL, (Eq.4D)

Equations (38) through (41), along with (21), (22), and (24) through (26), provide the basis for a

state-space form of the rotational equations of motion. The states are those defined previously.

Equations of Motion in State-Space Form
Define the following relative-position states:

Xy =Lpr e 55 (Eq. 42)

50 that, Trppt = Xa Sy + X282 + X4333- (Eq. 43)

Define next the relative-velocity states, x,, = x;. (Eq. 44)
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Differentiation of Equation (43), along with the use of Equations (44) and (26), leads to the
following;:

Frrrt = XpSp + X085 + X385 (Eq. 45)
A second differentiation, along with the use of Equation (27) yields:

Frept =Xp 81 + %28, + 385 (Eq. 40)
Introduce the use of a pre-superscript in parentheses to indicate the coordinate system used for
componentiation of vectors. Then Equations (43), (45), and (46) take the following respective

matric forms:

xal
(S)
KFITF* =YX (T Xes (Eq 47)
X3
(5. .
Tip* =X, =X, (Eq. 48)
and (S)_EFITF* = Xb s (Eq 49)

where x_ and x, are defined as indicated.
Define the relative-angular-position states,

x; =95, (Eg. 50)

=2
so that 5g= X8+ X028, + X355, (Eq. 51)
Define next the relative-angular-velocity states,
X = Xgi (Eq. 52)

4

y (F/SQ)Z X8, +%,38, +X,385, (Eq. 53)
dat )

so that



S

d” (Fisp) . & 1o 2 Lo 2
and e & Q): Xep3) T X285, T X383
dr”

The respective matric forms of Equations (51), (53), and (54) are then

xdl
() F/s . _
O=1\Xg2 (= Xa>
xd3
$)S g
—(F/SQ):L/: .
dt
$) S g2
and -T( m@): X,
dt

where x, and x, are defined as indicated.

Equations (14) and (46) can be used to develop a state-space equation for

express Equation (40) in measure-number form:

Xp1

O f e =k (= X
Frirm =322 [~ 2p-

Xp3

17

(Eq. 54)

(Eq. 55)

(Eq. 56)

(Eq. 57)

X, . First,

(Eq. 58)

Next, represent by a, the direct translational acceleration disturbance to the flotor, due to

unknown direct-disturbance force F ;. In particular,

gdziFd'

mn

Then Equation (14) can be expressed as follows:

1[(31 ) ] ). (&
:;; Er'+ Eu— gin+ gd'

Xp

(Eq. 59)

(Eq. 60)

Equations (38) and (54) can be used to develop a state-space equation for x, . First

express Equation (54) in measure number form:
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sdz( ) 'i‘(‘l

()= {x,,t =i (Eq. 61
3 s ¢2 2 q. )
dt” P

Next, represent by o, the direct rotational acceleration disturbance to the flotor, due to unknown

direct-disturbance moment M _, . In particular,
a,=1"M,. (Eq. 62)
Then Equation (38) can be expressed as follows:
(Eq. 63)

X, = (5){!1 M, +M, M, )+Q(1}'

pA:
Q that describes a coordinate transformation from the flotor-fixed to

Define a rotation matrix SIF

the stator-fixed frame, so that
(Eq. 64)

_ [S/FQ] 8,

P~ [~ |~
[
>

[5%)

Then Equation (63) can be re-expressed as
i =Y {(F)I—l [(F)M,ﬁ g, o+ O, ]+ (F‘Qd} ’ (Eq. 65)

where 'I is a central inertia matrix of the flotor, for fl, fz, and f}.

To approximate ¢ )f/voz-; using states, define x_. by
)y .
OFIS SN S (U (Eq. 606)
for some high value of circular frequency @, . Taking the Laplace transform,
(Eq. 67)

1

S+thC[{)‘C'}’

/ {(5) , }_
—N[JE - 2
w, s
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50 that xo=VEy e (Eq. 68)

=
for w<<w,.

Equation (15) can be expressed, in expanded form, as

| -
TNgE = (;](Ef +Eu)+£ l '(M_(- +M, +.Muf)XKF*E TOy Xl pp +dy- (Eq. 69)

Note that Equation (69) is a vector equation; to express it in measure-number (i.e., matric) form,
one must employ a matric notation for the cross product. To this end, observe that, for arbitrary

vectors

£|=—V1£]+Y1f2+31£3 (Eq. 70)

[~>

and ry =X, l+y2£2+22f_3, (Eq. 71)

the cross product can be expressed, in measure-number form by

‘ 0 -z » |0
. (Kl Xlz): 7 0 —-x |y¥2¢- (Eq. 72)
-% X 0 22

Represent the above skew-symmetric matrix by (F)f,( [11]. Using this notation, Equation (69)

can be rewritten as follows:

(S)i:/v(,gzlin O(F +F )+ S/FQ{ [(F)I-I (F)(M(_ M, M, )} X(F)l'r‘zs*‘ (g, XL’F‘E)}+ ®q,. (Eq.73)

A state equation for x,can now be formed by substituting from Equation (73) into Equation (66),

and solving for x_, to yield the following:

iC(- =0, <l ® (.E(' +Eu)+ S/FQ{ [(F)I—l (F)(M( +Mu +Muj')] ) (F)fF*E—{_ (F)(g(/ X.’..P*E) } + (S)gd>

m (Eq. 74)

_('Oll iy(' "
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Six of the state equations for the system are given by Equations (48) and (56); nine more,
by Equations (60), (65), and (74). The latter nine are written in terms of the various forces and
moments acting on the system. The force loads are defined in vector form by Equations (17),
(21), and (22); the moment loads, by Equations (39) through (41). In the following section these
loads will be written in measure-number form and expressed in terms of the states, for substitution

into Equations (60), (63), and (74).

Force Loads

Tn matric form, the /" control force (Eq. (21)) can be expressed as

Spi [— L f s B,(F)Ei}li . (Eq. 75)

« f L3

Define the control input u,, associated with the i control force, by

u, =1.. (Eqg. 76)

6 . .
SF =Y YF, =F.u, (Eq. 77)

where F. and u are a row vector and a column vector, respectively, defined as indicated.

Introduce the following skew-symmetric, small-angle representation for the coordinate

transformation matrix [10, (p. 352)}:

S/FQ: (1+ (8) Fis BX), (Eq. 78)

where 7 is the identity matrix. Then, substituting Equation (78) into Equation (75), one has

] =

i :[_ L (S)f( <I+ (5) F/SBX)B,-(F)B[j]L. (Eq. 79)



Expanding,

ARSI (Eq. 80)

=i =i =i =i e

(S)Ef- =-L; B I, I:

Next, substitute into Equation (80) from Equation (55), and represent the current /; as the
sum of a bias value /5 and a fluctuating value I, . This yields the following expression for the

control force:

(S)ax  (F)ax

Opi——r, 81, 1 "B, + LB 1, +1,)"T "B x,. (Eq. 81)

]

The bias current is the current portion necessary to counteract the bias force and moment required
to hold the flotor at its home position, and the fluctuating current is the additional portion
necessary for control. Assuming that the fluctuating current and the rotational states are small,

Equation (81) linearizes to the following:

i =i =i

i S)ax (F)a SYax (F)ax
p - (— LB I "B ]1,. + (L,- .1, 1 "B, );d (Eq. 82)
The resultant control force can now be expressed as follows:

8
OF =Y OF =F u+F,x,, (Eq. 83)

where (as before) u, =1, (Eq. 84)

and F

> and F_, are defined as indicated, from Equation (82).

Turn next to the umbilical force. Equations (22) and (23) can be expanded into matric
form, in terms of the selected state variables as follows. Recall from Equation (25) that
()

- B
rpe= O (Eq. 85)

Then Equation (24) can be represented as follows:



() _(®) (S/F )(F)
r = | -1 r . -
- u/:Fu TPy F Q “FF,

Assuming small angles Equation (86) can be re-expressed as follows:

(S) - (S) .. +(S) F/Sex (F)r o
—FunFu R F - “FF,

or, in terms of the states,

22

(Eq. 86)

(Eq. 87)

(Eq. 88)

S
[4 . . . . .
One can also represent T('” F ) in terms of the states, as follows. First differentiate Equation
c t U u

(24), with the stator frame assumed fixed:

Sd :
(7 ) + S(Ur Xr « .
FunFy d[ Fh - —F F

u

Substituting from Equation (34) into Equation (89) yields

S
d(_ . ”) y ( *F*J+%(F/.9Q)XKF*F ,

£y

or, in terms of stator-fixed coordinates,

) g (, . ): s, (_F;F*j . {(S‘JS%(F/SQ)} (S/FQ (F)KF"F“ ]

Using Equation (78), Equation (91) can be re-expressed as

dt dr

u

) S—%QFMFN ): (S)S_d_(zF:F*jJr {(S)Si(p/sQﬂx (1+ () F/SQX) (F)L.F*F :

Substituting with state variables,

VLl e eslin)”

X x i
U e silies) e
d[ ’F;mFu lb +l" I ’ld KF*F ’

u

(Eq. 89)

(Eq. 90)

(Eq. 91)

(Eq. 92)

(Eq. 93)
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[FS)

or, assuming the states are small,

(A;) M
(1 ( (F) x
dt whfu ) —YU X ) l )

~F'F, =
Finally, the umbilical force, Equation (22), can be expressed in terms of the states by substituting

from Equations (88) and (94):

5 _ N (F) x R B (F) x } } (H
F,=-K, {ia— L. 1,«1} —Cn{ib— e zv} -K,x,~C,x,+"FE,, (Eq.95)

u u

1,2 1.3
KMok K,

1

where K,=|K* KX K| (Eq. 96)

c, =\t ocrtoCrt (Eq. 97)
LCl’:l lej,z C[3,%

K,=| K KX K;7| (Eq. 98)

G ¢ Gy
and, c,=|c c¥ cr (Eq. 99)

Collecting terms, one obtains the following:

S p = K,x,~Cyx, K, ~K, Ories I, e, -c, iy Jx +F,.  (Eq. 100)

n=—da

or (S)F =F Xa + Ell[);xb + Fuld X4 +F Xe + (S)-Eb ’ (Eq 101)

—l wa = wute =

where F F F

war Luth Cwd

and F,,, are constant matrices defined as indicated.
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Moment Loads
The i control force, Ef. , exerts on the flotor a control moment,
M. =75 XE. (Eq. 102)
Substituting from Equation (21),
M =1 x(-1,L,B, 1 xB,); (Eq. 103)
or, in measure-number form,
Pyt —(-11B) Py ;B‘[( F/SQ(S)L)X(F)B,}- (Eq. 104)

Reversing the order of the second cross product above, and using the small-angle approximation

to *’F O [Eq. (78)], along with its orthogonality property, one obtains the following:

M =(1LB) { (F)ﬁx[(l -V )(S)LAAJ}- (Eq. 105)

Expanding, and reversing the order of the cross product ) F/SGX © )I one has
Fp' =(1LB) 77 B[(F)B_T (S)I) (1LB) P B[(F)BT[ (S)i,x “_Yd]j|' (Eq. 106)
Since I, = IB‘ +Iﬁ, (Eq. 107)

and since I, and x, have been assumed small, Equation (106) reduces to

(F\M (I,L,B,)(F) );3((”_32:( (S)IJ (I LB)(F) ;H[(F)—BA—T[ (S)z;(-_‘}iﬂ’ (Eq. 108)

(F) A% (5)

or Oy [LB ©p, "B 1}1 +[1 LB Or, (F)B,X(S)f*}f_’f,,. (Eq. 109)

1 —I

Equation (109) can be written alternatively as

M =M 1,+M], x,, (Eq. 110)

i T



25

for M., and M ! appropriately defined. Then the resultant moment due to the coil forces can be

expressed as

Py ZM I +M! x, =M u+M , x,, (Eq. 111)

where (as before), u, =1, (Eq. 112)
and M, and M, are defined as indicated.

The umbilical force F, exerts a moment M, on the flotor, as defined by Equation (20).
An expression for (F)_Ai”f is obtained by appropriately incorporating (S)_Ii“ from Equation (101)
into Equation (20):

(F)M (F) X F/SQ[F X +F;”[) b+Fn‘([ +E4Ie (] . (Eq 113)

-—FF wa=—=a

The moment L F . due to the bias force [, has been omitted from Equation (113) since it

*
"

is considered part of the bias moment M, in Equation (23). Upon linearizing FI50 as before,

one can rewrite Equation (113) as

<mM (r) . (I_ ) F/SQX) [F X +F¢!bxb + Furd:\_(l +Fure ¢ ] (Eq 114)

AT A --I- F, wa=a
Equation (I 14) can be simplified under the assumption that the states are small quantities:

(F)rx* [F x +F

Ly~ g K, waza uth

Xy + FugXg +Fuex, ). (Eq. 115)

Substitution of the definitions for F,,,. F,y, Fouq.and F,,, given by Equations (100) and (101),

into Equation (115), yields

Pty =0 | Ko, (K,,-—K,, ‘”r’;pjz(, C,,rb—(a, ¢, Or jx} (Eq. 116)

F'F,



or, expanding,

_ (F) x (F) X (F) x (F) x :
- [_ IF*F Kn:ll.u +|:— LF*F Ktr - r Ktl LA }id
it u

(Eq. 117)
[—(F)Kx * C{l j|’_\.b +[_(r)£x * CII' - (F)ZX L C{I (F)’_’x * j| '_x(f M
F*F, F*F, Frr F*F,

The vector M can also be expanded into matric form as a function of the state variables

by substituting into Equation (23) from Equations (88) and (94), to yield

(F)Mu = F/SQ{_Krr“_rd_ Crrfe —Krl( l(a _(F)r;*F ‘_YdJ—Crl( lcb - (F)I;*F Ee} +(S)Mbil ’ (Eq 118)

where K,=|KX K} K|, (Eq. 119)
KY K K
(o o)
c,={cx c* cr|, (Eq. 120)
cy cocy
K Ky K
2, 2,2 2,3
K,=|K;" K K;'| (Eq. 121)
3, 3,2 3,7
_Krlrl Kr! K}'t }
1,2 1,2 1,3
Crt Clt Cr{
2,1 2,2 23
and c,=|Cx ck c; (Eq. 122)
i ocir ey

Use of Equation (78) with Equation (118) yields
{FWM” = (I_ @ F/SQX) [_ K, x;—C.X, -K,.,(/_Ya - (F)L‘;‘F Xa J—Crt(fb - (F)’_:;‘*F X, )+ <S)Mb:l - (Eq. 123)

Assuming that the each of the state variables is small,
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rr=d FF

u

(F) . i (F) x . . (F) x . 5 (S)agx ..
—M—u =-K,X Crrﬁg _Krz(lca A o J_Cn{ﬁb - KF*F X )+ Mb + Mb X - (Eq 124)
u

Combining Equations (117) and (124), one obtains

(F)” (F) _ (F) x (F) x X
M+ Muf _(_ Krl_ EF"F Knjﬁa + (_Crf_ r anﬁb
u

_F*l:-"
+ (Krt (F)rj‘*[' - K"r _(F)K;(‘*r K’r * (F)I;('*r KU (F)K)[(‘*F + (S)M-xj X
Ty Ty ] "ty (Eq 125)
: - : - F)_:
+c, . -c, -, C+ By e, O, | x,
e AL A Y
+ (S)Mb.
Or,
(F} (F) _ . . O]
Mu + Muj' - Mum X + Mutl) Xp + Murd Xy + Mure X + Mb ’ (Eq 126)

for M. .M,,.M,,and M, appropriately defined.

ure

State Space Equations

The force loads (F . and F,) and the moment loads (M ., M ,, and M ) have now been

expressed in measure number form [see Egs. (83), (101), (111), and (126)] in terms of the state
variables. These expressions can now be used to obtain the final, expanded form of the linearized,
state-space equations of motion.

Beginning with the state equation for x,, substitution from Equations (83) and (101) into

Equation (60) yields

m 1L

1 1 1 | 1
'_tb =(_ Eunjﬂcu +(_ Fl‘llb]é"b +[_(Fm‘d +F;'(I)}£d +(_ E{t()ﬁ*’c +(—_ E'u ]H _(S)gin+(S)g(I +"£ (S)Eb : (Eq 127)
m m m m

Recall that the control, u, is a column vector of actuator currents 7, each of which is the sum of a

bias value I, and a fluctuating value /... Then one can define a new control «" such that,
i t -
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u=1I,+u, (Eq. 128)

where 1, is a column vector of actuator bias currents and x is a column vector of fluctuating
currents. Since the bias current is defined as the current necessary to counteract the umbilical bias
loads, substitution from Equation (128) into Equation (127) yields the following linear state

equation for x,:

1 1 | 1 1 +
ib - [_ Eu“:| * +|: E:/bjl Xt |:—(F;lt1+ F;d)j| Xa +[ F"u‘} = +[_ E'l‘:] 4 _(S)gl"l t (S)Q(I . (Eq 129)
m m m m

Turning now to the state equation for x,, substitution of Equations (111) and (126) into

Equation (65) results in the following expression for x,:

e:S/FQ(FJIVI{M Y +M“,/,’Lb (Mlt‘d+M‘(1)xd+M X +(Y)M +M,,u ] +S/FQ (F)gd ? (Eq 130)

wa=a i tre=e CH—

or, in terms of the new control u”,

iCe:S/FQ(F)I [M X +Murb)‘b (Murd +M¢'¢[)‘_Yu’ +M,,.x +M ] +S/FQ (F)gd : (Eq 131)

nta=a Hre=¢

Using Equation (78), and combining terms, one obtains

X, +M(“_ ]

i= (1+ (S)F/SQX)(F‘)I—l[M X, +M, , x, + (M +M“/)2€d +M,, X, (Eq. 132)

uta=a wurd

+(I+ (S)F/st) (F>ad '

Assuming small state variables, small control, and small direct angular acceleration disturbances,

Equation (132) reduces to the following linear state equation for x,:

w=[0r M) x A0 [ Or (v, M )] 5 00 M {0 e+ T (Eq. 133)

Turning now to the state equation for x_, substitution from Equations (83), (101), (111)

and (126) into Equation (74) results in the following expression for X, :



l _SIF (F) X (Fiy-1 l SIF (F) X

: R - U') . .

E{' - ( wta Q -’-F‘E 1 Mum +a)h m F;l[)— Q I Mulz X[) —a)hé(r

1 SIF ~ (F) X (Fyg-1 l SIF U‘) X (m -1
+a)’ll:—,7l(Elfd+Fl"(i)_ Q IF'E I (ler(l+M((I) §d+a)h —’;F;ue_ Q I Mmt
(Eq. 134)
1 SIF (r) X (F‘v -1
+@ h(_,; F:'u—. Q I M

() 1 $ SIF ~ (F) X {(F) SIF () x  (F) -1} (D)
T, a,t wh(;] F, _a)h( Q 1e l:) grl_a)h( Q rpe ! ) M,,
or, in terms of the new control L_l*,

1 1
. SIF (Fl X (F) -1 SIF F) X (F)
ér' = a)h(_’; P;m— Q I Mnu et} +a)h m wh Q I Muh xh h 7(“

1 ' 1 -
+a)h[— (}Zld +E‘d)_S/FQ (mf;*E (F)I_] (M:rd +M (l)jlir‘/ + a)h T e _S/FQ (F) x (F)I ]Mm —e
m m (Eq. 135)

1 SIF (F) x
! (F) -1
+wh(—’71 E’l{— Q I Mu

(5} SIFE ~FY X (F)
+W, Q(/_(Uh( Q L’F’E) &, -

Using Equation (78), one obtains

l S FIS X)mx s 1 ( (5) FIS )(F)x !
Ll)hlim uu (1 _@ IF*E I—M,m ifu‘F'(D;, ;lFutb— I+ _9 [, I_Mnb __\‘b —(1),15"(_

1 Sy F/S X (S) FI§ X
+o| —(E #E) -1+ 50O, Pr ] { I+ (F’F‘M}
(DhI: l( utzl+ l) ( ) F" (M«rc[+ (1) Yd+wh lfef‘( ) F* ure _¢ (Eq 136)

1
+wh —Ell_([+(5) F/Se )(F) 9 (F)FIM u
m FE 7
(&) (S) FIS n X (F
T, qy —wh(l QX) _F* O -

Assuming small states, small direct disturbances, and small controls, Equation (136) reduces to the

following linear state equation for x :



| l
. Nx A (F) X (Al .
X, :a)h [:n urd fre I Muu X + uth Tre 1 Mub X _a)h’_r(

m

ure (g4

]- (F) x 1 -
Py (P x Hx B
+(Uhl}"_l ute I're "M, X, +a)h HZF rF'E I Mu H +a) al a)h Tre gl :

1 x -~
+a)hli_( llf(/+Etl) (F) (FJI I(Mml-l_le)} (Eq 137)

A state-space representation of the system is given by Equations (48), (129), (137), (56),

and (133), for state vector

S
A (Eq. 138)
and control vector
"= i
i —IFI IF2 I,,3 IF4 IF5 IFG . (Eq. 139)

In summary, the final form of the linearized state-space equations of motion are as follows:

= x,, (Eq. 140)

m

| I | I | N
i'b = {_— Flvdu} Xa t |:_ Fl‘lfb} Xp +|:— (F;ml + E(l )} X + [i— F;”‘):I X, +[_ E'u} u _(S)gin+ (S)gd > (Eq 14 1)
n 1l m m

. I (F.x (P 1 Fyx  (H
X = (‘Uh [;IF - r 1 Mulu Yu +ﬂ)h 'r_’:lFl'ub_ _I: I mh '_r/; _0‘),‘1 _\(

‘ e SPE FE
Hﬂ”Bz (FutE )= "0, O (Mu—ﬁm)} X (Eq. 142)
+w,,[ %1 F, -, I M’"‘:l *{D;{; E,- O, Priy, “} 40, %a, -0, O, .

X=X, (Eq. 143)

and

[‘”1“ M,] X +[‘”1 M

u

O e )] w0 M AP M e+ T, (Ea. 144)
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Verification of State-Space Equations

The linearized state-space equations of motion for g-LIMIT, given by Equations (140)
through (144), were verified by comparing the linearized-system open-loop response to the open-
loop response of a nonlinear “truth” model, for various inputs. Two input scenarios were used for
these comparisons. In the first scenario (Scenario # 1), the flotor was excited via an actuator by
an arbitrary force-plus-torque pulse combination, to result in a fully coupled six-degree-of-
freedom response. In the second scenario, the flotor was excited via an actuator by a force pulse
in the +2Z stator-fixed direction. For each scenario the motion of the linearized system was then
compared with the response of the nonlinear model. Tt was found that the nonlinear and linearized
models exhibited essentially identical responses. For each scenario, the potential and kinetic
energies were plotted as functions of time. When the systems were made conservative (i.e., with
the umbilical damping removed) it was shown that the total energy was constant, as expected.

The nonlinear model was constructed from the nonlinear form of the equations of motion,
. . . . FIS . .
Equations (1) and (3). Employing the quaternion representation q of the transformation from

stator-fixed to flotor-fixed coordinates, the following kinematic equation was used propagate the

rotational motion of the flotor [12]:

q, (Eq. 145)

dis | 1 .
di(//sg)z5 S F/S_

where Q= (Eq. 146)

and w="0"f. (Eq. 147)
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Equations (16) through (23) were used, in their respective nonlinear vector forms, to compute the

forces and moments in the nonlinear model. The small-angle approximation
FIS A .
0-5,=2g4q, (i=123) (Eq. 1472)
was used in the third summation terms of Equations (22) and (23), where the factors ¢g; are as

defined by Sa=la & @ a4l (Eq. 147b)

(This is a reasonable approximation for the expected range of angular motions of the flotor relative
to the stator.)

Representative flotor and umbilical parameters, shown in Table 1, were used for the
simulations. There are three umbilicals included in this model of g-LIMIT. The translational and
rotational stiffness matrices for each umbilical were assumed to be diagonal along an umbilical-
fixed set of coordinate directions. Similarity transformations of these diagonal matrices were
performed assuming a coordinate transformation from each local umbilical-fixed reference frame
to the stator-fixed frame. First, a coordinate rotation about the stator-fixed +Z axis of 120 deg and
240 deg was performed to align umbilicals #2 and #3, in their respective home locations. Then, for
each umbilical, a 20-deg rotation about each coordinate axis was used to represent an arbitrary
misalignment of the diagonal-stiffness directions to the stator-fixed directions. The translational
and rotational damping matrices were assumed to be proportional to the stiffness matrices with a
damping ratio of 3% used for all of the vibrational modes. The resulting umbilical stiffness and
damping matricies, given below by Equations (148) through (159), were used in the simulation
study. The superscript-in-parentheses notation denotes the umbilical identification number for

each of the three g-LIMIT umbilicals. All stiffness and damping translation/rotational cross-terms,

. (i} [EA (1) )] .
ie, K", K,~, C. ~,andC ", were considered to be zero.



28.49 -2.46 830
K=| -246 26.73 -5.85| N/m,
830 -5.85 44.77

[ 25.04 047 091
K=| 047 30.18 10.12 | N/m,
091 10.12 44.77

2930 1.99 -9.22
KY=| 199 2592 -427|N/m,
| -9.22 -4.27 4477

1.26 -0.04 0.16

C”(‘)z -0.04 1.22 -0.11 | N/ m/sec,

0.16 -0.11 1.58

1.19 0.00 0.01
C¥=| 0.0 1.29 0.20 | N/ m/sec,
0.01 0.20 1.58

.27 0.03 -0.18 ]
c¥=| 003 121 -0.08 | N/misec,
-0.18 -0.08 1.58

1.86 0.09 -0.33]
KP=1 009 193 023 |N-m/rad,
-0.33 023 1.20

1.99 -0.01 -0.03]
K®=| -0.01 1.79 -0.40 | N-m/ rad,
-0.03 -0.40 1.20 |

(Eq.

(Eq.

(Eq.

(Eq.

(Eq. 15

(Eq.

(Eq.

(Eq.
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1.82 -0.07 0.36
K%=| -007 196 0.17 | N-m/rad, (Eq. 156)
0.36 0.17 1.20

0.055 0.001 -0.012
c®=| 0001 0063 0010 |N-m/rad/sec, (Eq. 157)
-0.012 0.010 0.033

0.062 0.002 -0.002
C”=| 0002 0.056 -0.015 | N-m / rad/sec, (Eq. 158)
-0.002 -0.015 0.033

0.059 -0.004 0.014
and c =] -0.004 0059 0.005 | N/msec. (Eq. 159)
0.014 0.005 0.033

In addition to the parameters listed in Table #1 the actuator currents were set to initial bias
values. These bias currents were required to produce a bias force and moment to move the flotor
from its assumed relaxed position to the home location. The flotor relaxed-position was assumed
to be 2 mm from the home-position, and to be misaligned by approximately 2 deg about each

stator-fixed coordinate axis. This resulted in the following set of bias current values:

I, =-0264 A, Iy = -0.1593 A, und I = 0.123 A.
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In Scenario #1 the six actuator current pulses were chosen to approximate combined
impulsive force loads in the +Z stator-fixed direction, and moment loads about the +X and +Y
stator-fixed directions. These loads were sized to produce a total energy output of 0.003 N-m
equally divided among the three loads. The current pulses were shaped as one-minus-cosine
functions to provide easily integrable inputs with no temporal discontinuities. The pulses were
initiated at 1 sec and lasted for a 0.1-sec duration. Table #2 shows the integrated values of the
actuator current pulses for Scenario #1.

Figures 2 through 6 show comparisons of the simulation results for the linear state-space
model and the nonlinear “truth” model for Scenario #1. As shown in these figures the linear model
responses match the truth model very well for all of the state variables. The state responses evolve
in time with the expected frequency and damping. The errors between the linear responses and the
truth-model responses are shown in Figures 7 and 8. These relatively small errors, assumed to be a
result of the linearization process, diminish as the system response decays. Figure 9 shows a plot
of the flotor kinetic and potential energy for Scenario #1. As expected, the impulsive loading
results in an initial translational kinetic energy of 0.001 joules and a rotational energy of 0.002
joules. The kinetic and potential energies oscillate out-of-phase, and the total energy dampens out
exponentially.

A second scenario (Scenario #2) was simulated to demonstrate that the model conserves
energy when the damping matrices are all set equal to zero. In Scenario #2 the six actuator-current
pulses were chosen to approximate an impulsive force load in the +Z stator-fixed direction only.
The impulse moments used in Scenario #1 were eliminated from the actuator loading. As n
Scenario #1 the loads were sized to produce a total energy output of 0.003 N-m. In this case the

total energy input to the flotor was along the stator-fixed +Z direction. The current pulses were
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shaped as one-minus-cosine functions to provide easily integrable inputs with no temporal
discontinuities. The pulses were initiated at 1 sec and lasted for a 0.1-sec duration. Table #2 shows
the integrated values of the actuator current pulses for Scenario #2.

Figures 10 and 11 show a comparison of the flotor output energy responses for Scenarios
#1 and #2, respectively. The potential and kinetic energy responses differ between the two
scenario, due to the difference in the impulsive loading. However, the total flotor energy remains
constant at the expected value of 0.003 joules for each of the scenarios, after application of 1ts
respective impulsive loading, at 1 sec. This demonstrates that the model conserves total energy at

the appropriate level for an arbitrarily chosen actuator loading.



Table 1 — g-LIMIT Parameters

Parameter Symbol Value
Flotor Mass m 15.12 kg
Flotor Moments of Inertia I, 0.50 kg m®
I 0.62 kg m’
1 0.18 kg m?
Flotor Products of Inertia I, le-4 kg m*
r -le-4 kg m’
= -8¢-4 kg m’
I,
Umbilical Locations (F) S [0.L0 -0.12 -0.032] m
(3 Umbilicals) o [0.1 006 -0.032]m
[-0.1 0.06 -0.032] m
Actuator Current Vectors (S) (S)f [0L0 0.0 1.0]
(6 Actuator Coils) - [-1.0 0.0 0.0]
[00 00 1.0]
[0.5 0.866 0.0]
[0.0 0.0 1.0]
[0.5 -0.866 0.0]
Actuator Magnet B-Field Vectors (F) ) 4 [0.L0 1.0 0.0]
(3 Actuator Magnets) - [0.0 1.0 0.0]
[0.866 -0.5 0.0]
[0.866 -0.5 0.0]
[-0.866 -0.5 0.0]
[-0.866 -0.5 0.0]
Actuator Constant (L, B’) 1.0 N/Amp
Table 2 — Actuator Current Pulse Values
Scenario #1 Scenario #2
[Amp-sec] [Amp-sec]
Actuator #1 Current Pulse 0.0 0.0
Actuator #2 Current Pulse -0.231 -0.10
Actuator #3 Current Pulse 0.0 0.0
Actuator #4 Current Pulse -0.139 -0.10
Actuator #5 Current Pulse 0.0 0.0
Actuator #6 Current Pulse 0.193 -0.10
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Figure 3. Flotor Velocity for Scenario #1
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Figure 5. Flotor Angular Displacement for Scenario #1
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Relative Angular Position of Flotor CG, F/S
] - =
0s N — '[‘_Truth"I\IXIoddell
5 Y inear Model |
g L\ /) /\\/\/\/\ —
& ool
-1
0 2 4 6 8 10 12 14 16 18 20
LN
— 05
ANV WA WA\ WA NN
2 45 \// / YV
-1
0 2 4 6 8 10 12 14 16 18 20
1
— 05
g JaNI DN
= / <
@
€ o5
-1
o] 2 4 6 8 10 12 14 16 18 20
Time [sec]



Relative Angular Velocity of Flotor CG, F/S

o — Tl
iAW AN

o

(S1) [deg/s]

)
et

N

(S3) [deg/s]
(=]
M
”
I

R

A
T
|

Time [sec]

Figure 6. Flotor Angular Velocity for Scenario #1
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Rotational States Errors (Xd, Xe)
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Concluding Remarks
This paper has presented the derivation of algebraic, state-space equations for the
Glovebox Integrated Microgravity Isolation Technology (g-LIMIT). The states employed include

payload relative translational position (x,) and velocity (x,). payload relative rotation (x,) and
rotation rate (x, ), and payload translational acceleration (l() Feedback of x, corresponds to a
change in effective umbilical translational stiffness, where the effective umbilical is assumed to be
attached at the flotor center of mass. Similarly, feedback of x,, x,, or x, corresponds,

respectively, to a change in effective umbilical translational damping, rotational stiffness, or
rotational damping. Likewise, feedback of payload translational acceleration causes a change in
effective payload mass. Thus, a cost functional which penalizes these states produces intuitive
effects on system effective stiffness, damping, and inertia values.

The acceleration states can be selected to pertain to any arbitrary point E on the flotor.
This allows an optimal controller to be developed which penalizes directly the acceleration of any
significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-space form so that the powerful controller-design
methods of optimal control theory (e.g., H,synthesis, H_synthesis, u synthesis, mixed-u
synthesis, and g analysis) can be used. References [7], [8], [13] and [14] detail the H, optimal
controller design approach used for g-LIMIT, and Reference [15] describes the insights gained
from a single-degree-of-freedom case study.

The linearized state-space equations have been verified against a nonlinear “truth” model
in a simulation study. The state responses from the model were shown to agree very well with the

“truth” model for a set of parameters representative of the g-LIMIT configuration. Additionally, it
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was shown that flotor kinetic and potential energy responses were as expected, demonstrating that

the model conserves total energy for an arbitrarily chosen impulsive actuator loading.
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